
UnTrustZone: Systematic Accelerated Aging to Expose On-chip Secrets

Jubayer Mahmod
Virginia Tech

jubayer@vt.edu

Matthew Hicks
Virginia Tech

mdhicks2@vt.edu

Abstract—As technology scaling brings society closer to the
vision of smart dust, system designers must address the threat
of physical attacks. To address the threat of physical access to
computing devices, defenders move secrets on the chip, keeping
them out of reach of non-nation-state-level attackers. Mod-
ern systems allow hardware-backed security enclaves called
Trusted Execution Environments (TEEs); TEEs add hardware-
level protections on top of keeping secrets on chips that extend
protection against privileged software and flaws within the
untrusted parts of the software. While the best TEEs protect
against concurrent and temporally recent attacks (e.g., the cold
boot attack), we uncover a new threat to all forms of on-chip
crypto: long-term data remanence.

We show that the most ubiquitous form of on-chip mem-
ory, Static Random-Access Memory (SRAM), changes at the
analog-domain-level in a data-dependent way as software uses
it. Under normal conditions, these changes occur gradually
over a device’s lifetime, but we show how an attacker can
systematically accelerate this data imprinting on SRAM’s
analog domain to effectively burn-in on-chip secrets. We then
reveal the imprinted secrets through measurements of SRAM’s
power-on state. We use this capability to demonstrate three
attacks: one that reveals an AES key protected by TrustZone,
proprietary firmware protected by TrustZone, and secrets
stored in cache memory. Overall, we show that it is possible
to imprint and exfiltrate secrets from a range of SRAM-based
memories across 13 devices, from 8 manufacturers, produced
across three decades—with up to 98% accuracy. To address this
threat, we provide guidance to chip vendors and programmers
on the defensive trade space.

1. Introduction
In 1988 Mark Weiser coined the term ubiquitous com-

puting to describe his vision of a future society where com-
puters are deeply-ingrained, ever-present, yet invisible [91].
We are rapidly fulfilling this vision as transistor scaling
brings us into the Internet of Things (IoT) era of computing
and brings smart dust [57] within reach. As a consequence,
we are already seeing critical infrastructure [51], medical
devices [78], and defense systems [14] become more de-
pendent on IoT devices. This dependence will only increase
in the future as we fulfill Mark Weiser’s vision.

Given society’s increasing dependence on IoT-scale sys-

tems, their security is paramount. Security concerns for this
class of devices extend beyond more traditional devices
to emphasize the physical domain. This is due to their
ingrained nature, where physical access is the common case.
Thus, one of the grand challenges of security in the era of
ubiquitous computing is protecting secrets when the attacker
can hold a device in their hands.

An accepted solution to the threat of physical access is to
shrink a system’s security perimeter to the chip that performs
the security-critical computation. This prevents an attacker
from interposing and capturing secrets while they are in-
flight between system components or at-rest in a less-secure
component. For example, the cold boot attack captures se-
crets while they are at-rest in DRAM chips [31]. In the cold
boot attack, the attacker leverages the data remanence effect
of DRAM (enhanced by reducing the chip’s temperature)
to transfer the DRAM chip(s) from the victim’s system to
the attacker’s system—without corrupting the data. Once the
attacker installs the DRAM into their system, they employ
forensics tools to hunt for secrets (e.g., cryptographic keys).
To eliminate such attacks, researchers advocate fully on-
chip secure computation, where plaintext secrets are never
allowed off-chip [64], [23], [18].

Recently, researchers and processor vendors alike fur-
ther increase system security by constricting the security
perimeter to hardware-enforced partitions within the chip
(called enclaves), creating a Trusted Execution Environment
(TEE). TEEs increase security by protecting against bugs in
software executing outside the TEE—even if it is privileged
software. The most widely deployed TEE is ARM Trust-
Zone [6]; most modern ARM processors offer the TrustZone
extension, including both microcontroller- and application-
class devices. TrustZone provides hardware support to soft-
ware by switching a core between a Secure World and
a Normal World, where the Secure World can access the
entire system, but the Normal World cannot access Secure
World resources. At run-time, TrustZone hardware checks
the access permission of each transaction to ensure that it is
within the appropriate security boundary; attempts to access
Secure World resources from the Normal World trigger a
HardFault. Fully on-chip crypto-operations combined with
TEE support, as exemplified in as Cache assisted Secure
Execution (CaSE) [97], create the most comprehensively
secure software execution environment today.

Undeterred, researchers continue to identify weaknesses

that processor vendors must address in their defenses. At-
tacks on TrustZone focus on side-channels created by im-
plicitly shared physical resources. The first attack type ex-
ploits shared cache and TrustZone’s security-state-oblivious
eviction policy [17], [49]. The second attack type exploits
the energy management policy, which applies across both
Secure and Normal worlds, to induce faults in security-
critical software executing in the Secure World [86], [66].
The solution to these attacks is a further reduction in the
security perimeter, but an open question remains, "Is secu-
rity perimeter reduction sufficient to eventually secure the
system?"

We show that the current focus on placing temporally-
adjacent restrictions is insufficient by uncovering and ex-
ploiting the threat of long-term data remanence. Data re-
manence is when a memory device retains information past
when it is assumed to no longer exist. Short-term data rema-
nence (due to capacitance in the circuit) is well-studied, hav-
ing led to cold-boot-style attacks on both DRAM [31], [88],
[11] and SRAM [83], [84], [95], [89]. In a cold-boot-style
attack, attackers leak secrets by resetting software or moving
memory between machines, before the memory loses state.
The attackers can then use their own software to copy the
latent data in the memory device—without restrictions of
the original software/system. More recently, short-term data
remanence attacks have been used to clone SRAM-based
Physical Unclonable Functions (PUFs) [95] using the same
process. Given the threat of data remanence, TrustZone
eliminates such attacks by wiping all secure memory as
part of all Secure World software updates.

We show that wiping memory is insufficient as circuits
“remember” data for much longer through subtle changes
to their analog-domain properties—changes that depend on
how the software uses the circuits. Previous research reveals
that circuits undergo a process called aging [42], [2], [46],
and this aging is data-dependent [30]. Researchers have
leveraged data-dependent aging in memory circuits and
processing cores as a denial-of-service attack on SRAM-
based PUFs [74] and processors [39] and to reveal a small
fraction of RSA key bits [4], [33], [58] in simple discrete
SRAM chips. This paper builds on those papers, showing
how device aging can be controlled and accelerated ex-
ponentially to reveal up to 98% of secret data stored in
on-chip SRAM—even in the most recently produced ARM
TrustZone devices. Our results motivate extending existing
short-term data remanence defenses to include long-term
data remanence.

There are two challenges that we address to create
a practical attack out of long-term data remanence: 1

measuring analog-domain changes in an efficient and non-
destructive manner, i.e., a digital measurement, and 2 in-
creasing the rate of analog-domain change such that secrets
measurably change the system at the digital level. We solve
the first challenge by leveraging a unique property of the
memory used to hold secrets on-chip SRAM: When SRAM
cells power on at boot time, its construction leads to a
hardware-level race condition to set the initial value of the
cell (i.e., its power-on state). The relative analog-domain

properties of the logic gates at the heart of the SRAM
cell influence this hardware-level race. Thus, by capturing
the power-on state of an SRAM cell, we get a digital
window into its analog-domain properties. As we show,
these analog-domain properties depend on the value held
by the SRAM cell—which software dictates—in a process
known as transistor aging; meaning that software gradually
imprints itself and its data into SRAM’s power-on state over
a device’s lifetime. Since it is not practical to wait for secrets
to imprint themselves over several decades, we solve the
second challenge by using non-invasive stressors (i.e., tem-
perature and voltage) to accelerate the imprinting process
over 100,000,000x. The resulting foundational capability
is the power to pause software, imprint software’s secrets
into SRAM for less than 24 hours, and reveal the
imprinted secrets through power-on state samples with
up to 98% accuracy.

This paper makes the following technical contributions:
• We demonstrate that modern SRAMs are sensitive to

accelerated stress, which allows an attacker to retrieve
on-chip secrets without sophisticated tools (§5).

• We demonstrate how SRAM’s aging creates a low-cost
side-channel for on-chip cryptographic key exfiltration
(with 97.2% accuracy) (§6).

• We show how an attacker clones proprietary firmware
(with up to 95.82% accuracy) that is protected using
TrustZone-enforced on-chip execution (§7).

• We extend the attack to general-purpose processors and
show how cache memories are susceptible to long-term
data remanence attacks (with 79%- 93% accuracy)(§8).
We combine all three attack scenarios in a commodity
Cortex-A72 processor to demonstrate the generality of
the proposed attack (§9).

• We discuss the defensive landscape from both software
and hardware levels (§10).

2. Background
TrustZone, a widely deployed security extension for

ARM-based devices, facilitates TEE for secure software
by applying hardware-enforced barriers among applications;
our attack reveals on-chip secrets from such systems exploit-
ing transistor aging and SRAM’s power-on state. Aging-
induced change in the power-on state is slow and takes
decades to leave exploitable data traces under normal oper-
ation. From an attacker’s perspective, artificial stress elim-
inates these downsides of the natural aging response of
a device. This section provides background on TrustZone,
SRAM’s power-on state, and aging acceleration methods to
imprint software secrets into an SRAM’s analog domain.

2.1. ARM TrustZone
A TrustZone divides a system into the Secure World

and Normal World where the same physical core executes
secure and non-secure applications in a time-sliced manner
by switching between the worlds [6]. The secure state has
full system access, while the non-secure state (i.e., Normal

Core

SRAM

Flash

Preipherals

Cache

Secure state

Non-secure state

Core

Cache

Cache

Cache

Non-secure

Non-secure

Non-secure

Figure 1: An abstract view of a TrustZone-capable processor and its
different access permissions throughout the system. In an ARMv8-
A architecture, caches are shared between Secure World and Normal
World. ARMv8-M architecture allows configurable partitions in the
processor’s memory map.

World) only has access to non-secure memory regions. An
NS flag identifies the security state of the processor, and the
AMBA bus carries this flag to all the system components to
maintain hardware-enforced isolation between secure and
non-secure transactions. The tag of each cache line carries
an NS security flag to indicate whether the line belongs
to a Secure World or a Normal World. It is architecturally
impossible to access a secure cache line with non-secure
access [9]. While in a Secure World, a core can switch to
Normal World and vice versa by executing specific instruc-
tions such as SG and SMC for Cortex-M devices and Cortex-
A devices, respectively. Figure 1 illustrates an abstract view
of a processor with TrustZone extension.

Cortex-M devices allow Normal World applications
to request services from Secure World using Non-Secure
Callable (NSC) functions. The NSC functions are ‘black
box’ to a non-secure application, and any data inside these
functions are not exposed to the Normal World. A call to
these functions switches the core into Secure World, and
then it executes the function.

A Cortex-M device can be configured into multiple lev-
els of security settings in its lifetime. The hardware isolation
paves the way to allow independent software development
for Secure World and Normal World, providing security to
the proprietary software and its data. For example, one user
can design only secure software and program a device before
handing it over to another user. The second user programs
the non-secure part of the system without any access to the
secure area other than through NSC functions. The only way
to gain upper-level security access is by erasing the entire
chip or having an authorization key from the secure user.
UntrustZone presents an innovative approach to accessing
secrets across security boundaries by leveraging SRAM’s
analog behavior (§6, §7, and §8).

2.2. SRAM Power-on State
Figure 2a illustrates a typical 6-transistor schematic of

an SRAM cell. The cross-coupled CMOS inverters store a

VDD

Q ~Q

P1

N3

N2

P2

N4

~B
it

Li
ne

B
it

Li
ne

Word Line

N1

Inverter Inverter
1 2

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ns)

0.0

0.2

0.4

0.6

0.8

Vo
lt

ag
e

(V
)

Q
~Q
VDD

(b)

Figure 2: (a) Schematic of a conventional 6-transistor SRAM cell and
(b) power-on behavior of an SRAM cell at the 22nm technology node.

bit of data through positive feedback. Outputs of Inverter
1⃝ and Inverter 2⃝, Q and ∼Q, respectively, are connected
to each other’s inputs, forming a loop. When Word Line is
asserted, transistors N3 and N4 provide access to the data
stored in the loop. These two transistors remain off unless
the address decoder performs a reading or writing operation.

At power-on, nodes Q and ∼Q are the ground state
and gradually settle their respective steady-state voltages;
hardware race condition between Inverter 1⃝ and Inverter 2⃝
determines the final values [22]. Since one inverter feeds the
input of the other inverter and outputs are the same voltage at
power-on, the hardware race condition puts these two nodes
into opposite logic states. We simulate this behavior using
HSpice (@22nm predictive technology model [10]) and plot
the resulting waveform in Figure 2b. The output nodes, Q
and ∼Q, follow the supply voltage ramp and resolve into
opposite logic states long before the 𝑉𝐷𝐷 ramp settles.

Inverter 1⃝ and Inverter 2⃝ are electrically identical as
they are designed to be mirrored versions. A cell with such
symmetric characteristics produces random power-on values
depending on the operating condition of the cell. Most
cells, however, power on into a defined logic state due to
the asymmetry introduced by manufacturing-time process-
related variabilities [3], [96]. As a result, some SRAM cells
show random power-on values across trials (i.e., weak cells),
while others show a strong bias towards one logic state over
the other (i.e., strong cells). A cell’s bias 0.5 indicates that
50% of the time, it powers on as logic 0, and in the other
50% of the trials, it becomes 1. We dump the power-on val-
ues of a SAML11 device [59] multiple times and construct
a distribution of the bias of each cell. Approximately 10%
cells show weak characteristics (0 < 𝑏𝑖𝑎𝑠 < 1), and 90%
cells strongly prefer either logic 1 or 0. Figure 3 illustrates a
128×512-bit snippet of the SAM11’s SRAM power-on state
(majority-voted). In the next section (§2.3), we will show
how an attacker can change this hardware race condition
(and power-on state) to reveal the value stored in an SRAM
cell.

2.3. Analog-domain Changes and Power-on State
As transistors operate, they go through electrical and

thermal stress, which affects their performance. Physical
phenomena such as Hot Carrier Injection (HCI) [12] and
Bias Temperature Instability (BTI) [2], [46] are responsible
for a transistor’s performance degradation over time, which

Figure 3: Heatmap of a SAML11 device’s power-on SRAM state.

is known as aging. Aging results in a gradual increase of
the threshold voltage (|𝑉𝑡ℎ |) and reduced carrier mobility
(𝜇) of transistors [80]. Hot carrier injection is responsible
for aging when a transistor switches between logic states,
and switching frequency determines the magnitude of HCI-
induced aging [80]. Bias temperature instability ages a tran-
sistor as long as it remains ON (i.e., gate to source voltages
|𝑉𝑔𝑠 | > |𝑉𝑡ℎ |). In an SRAM cell, regardless of the stored
logic state, two transistors experience BTI-induced aging:
in Figure 2a, Q = 1 ages P1 and N2 while Q = 0 ages
P2 and N1. A MOSFET turns ON in the saturation region
where the drain current is 𝐼𝑑 ∝ (|𝑉𝑔𝑠 | − |𝑉𝑡ℎ |)2 [77]. A
transistor’s drain current 𝐼𝑑 reduces over time because the
aging-induced degradation increases the threshold voltage
(|𝑉𝑡ℎ |), slowing it down. Note the impact of BTI in PMOS
(NBTI) is much more dominant than BTI’s effect on NMOS
(PBTI) beyond 45nm Technology [40]. However, PBTI has
a significant impact on aging a modern transistor with high-
K dielectric and metal gate [43].

Aging affects the switching speed of a transistor, which
in turn influences the outcome of the hardware race condi-
tion at an SRAM’s power on. That is, as the power-on state
depends on this race condition of an SRAM’s startup, aging
potentially impacts the state at which the cell eventually
resolves its transient state. For example, let us assume the
cell in Figure 2a powers on at logic 1 because Inverter 1⃝
turns on faster and pulls the node Q to 𝑉𝐷𝐷 . If we leave
the cell operational in this state (with Q = 1, and ∼Q = 0),
P1 undergoes static stress because |𝑉𝑔𝑠 | > 0 (we ignore
the effect of NMOS aging for this example). According
to the charge trapping/de-trapping theory of BTI [93], the
threshold voltage of P1 (|𝑉𝑡ℎ𝑃1 |) logarithmically increases
over time, making P1 slower. When this analog-domain
change makes Inverter 2⃝ faster than Inverter 1⃝ (i.e., |𝑉𝑡ℎ𝑃1 |
> |𝑉𝑡ℎ𝑃2 |), the power-on state of this cell flips (i.e., the cell’s
post-stress power-on state is 0). On the other hand, if the
cell undergoes aging with logic 0, the initial speed difference
between P1 and P2 increases in the same direction; transistor
P2 becomes slower, reinforcing the power-on state (logic 1)
of this cell. The complement of the power-on state indicates
the logic state it holds during the aging process. Thus, given
sufficient operation (aka stress), the power-on state of an
SRAM cell reveals the software value held by that SRAM
cell during operation/stress.

3. Attack Overview
In the overarching threat model of our attack Untrust-

Zone, we assume an attacker with physical access to a de-

vice that holds secrets on-chip guarded by countermeasures
(e.g., TrustZone) to conventional hardware-and software-
level attacks. We create target-information- and SoC-specific
threat models to represent distinct attack scenarios, each
fulfilling the overarching threat model.

We observe that SoCs allow access to uncontaminated
SRAM power-on state and core voltage pins, and these
architecture/circuit-level features are exploitable to induce
aging in SRAM (and imprint secrets). This observation
leads us to develop UntrustZone attack. Its secret retrieval
accuracy depends on aging acceleration (1) voltage, (2)
temperature, and (3) stress time (§5.2).

The attack begins with identifying the suitable voltage
pin(s) and corresponding off-chip power delivery compo-
nents, followed by measuring the nominal voltage at the
pin(s). Once these attack parameters are available from
experiments with guidance from the publicly released device
datasheet, we place the target device in the stress condition
(i.e., accelerated aging). The secrets imprint into the analog
domain of SRAM during the ‘burn-in’ effect (i.e., aging) of
the victim device, and after a full chip erasure or privilege
change (due to TrustZone enforcement) SRAM’s power-
on state reveals the secure-access-only information to non-
secure state. To demonstrate the potential threat of long-
term data remanence, we conduct the attack on three recent
commodity devices and show that fully on-chip execution
with support from hardware-enforced security isolation is
insufficient against the proposed attack. The following is a
summary of the attacks and their outcomes:

• Exfiltrate cryptographic key from TrustZone: In the
first attack, we illustrate how UntrustZone exposes a
cryptographic key from a system that runs fully on-
chip computation, guarded by TrustZone. We use a
popular microcontroller, SAML11, which is marketed
on its security features [60]. The victim application
uses on-chip crypto—in addition to hardware crypto
accelerators—to protect the plaintext. Even with these
protections in place, we capture the key with 97.2%
accuracy (§6).

• Exfiltrate proprietary firmware from TrustZone:
In the second attack, we target proprietary firmware
designed to be secure against off-chip cloning. Despite
being fully on-chip while the CPU performs computa-
tions, UntrustZone is able to expose this firmware’s in-
structions and data from the SRAM with up to 95.82%
accuracy (§7). For this demonstration, we use a dual-
core LPC55S69 microcontroller [63].

• Exfiltrate secrets from cache: In the third case, we
extend the attack to target more complex SoCs (Cortex-
A53 and Cortex-A72 from Broadcom), which use pri-
vate caches as nonvolatile secret storage (§8 and §9).
We steal secrets from caches of a Cortex-A53 and
Cortex-A72 processor with 79% and 93% accuracy,
respectively.

When exploring software mitigation, we observe that
TrustZone does prevent access to secrets by erasing memory
when security access level changes, but long-term data

Switching logic

Cores

L

C

Vcore

(a)

Switching logic

Cores
C

External
power

Vcore

(b)

Figure 4: Illustrates the target system’s (a) nominal power supply
configuration where a switching regulator supplies the SoC’s cores.
(b) Our attack configuration, where we remove the inductor (L) and
connect an external voltage probe to control the victim’s voltage.

remanence still reveals secrets through the analog domain.
Software-level defenses to UntrustZone include preventing
access or erasing the power-on state during an SoC’s boot
phase and/or scrambling SRAM data at runtime to reduce an
adversarial accelerated burn-in effect. These defenses have
shortcomings, such as eliminating security applications of
SRAM power-on state and boot speed reduction. On the
hardware side, system and SoC designers have options to
limit electric and thermal acceleration and control debug
access (once TrustZone has been deployed). While effective,
these mitigation techniques pose many challenges, such
as strictly modeling runtime core voltage fluctuation and
enforcing debug authentication. To facilitate future defenses,
we provide a detailed qualitative analysis of the trade-
space between software- and hardware-based defenses in
Section 10.

4. Identifying Attack Enablers
An attacker needs access to an SRAM’s uncontaminated

power-on state and a way to accelerate the secret imprinting
to launch a long-term-data remanence attack in a reasonable
time frame because normal circuit aging takes decades to
‘burn-in’ data in SRAM’s analog domain [54]. We apply
high voltage and temperature to accelerate aging so that we
can imprint data to and extract data from SRAM’s analog
domain within hours. While prior work shows that higher
than nominal voltage accelerates circuit aging, they fail to
recognize the circuit-and system-level complexity associated
with the modern SoC, which prevents elevating SRAM
voltage [4], [33], [74]. This leaves numerous questions
unanswered, for example, how to elevate a cache’s voltage
to attack cache-based on-chip computation while keeping
the processor from resetting the data on the cache? That
is, attack execution techniques on a discrete SRAM chip
and a complex SoC are significantly different; UntrustZone
bridges this gap by exploiting the power delivery network
of a modern SoC to provide access to the internal power rail
and accelerating the secret imprinting process. The follow-
ing discusses three hardware and software challenges that
we address to execute UntrustZone on real-world devices.

C1: Overdrive SRAM’s power bus.

Electric and thermal stresses during regular operation are
responsible for a transistor’s performance degradation (i.e.,
aging), but from an attack perspective, natural aging is slow
and impractical for exposing secrets [54]. Exposing a device
to higher voltage and temperature induces stronger electric
and thermal stress expediting aging.

Modern microprocessors are equipped with brown-out
detectors and high-voltage protection circuitry to prevent
under and over-voltage in their power buses. Applying an
increased voltage directly at the 𝑉𝐷𝐷 pins does not increase
the SRAMs voltage because of internal protection circuitry
and voltage regulators. Such an attempt only overheats a
device due to a significant voltage drop in the linear reg-
ulators (or voltage clipping circuitry). However, this does
not impact the memory domain voltage in a way that would
induce accelerated imprinting.

In SoCs, however, the internal power supply system di-
vides logical blocks (and physical blocks) which are electri-
cally reachable [53] from external pins bypassing protection
and regulator circuitry. SOCs need dedicated external volt-
age pins (i.e., 𝑉𝑐𝑜𝑟𝑒 to supply power to the core components)
to filter noise generated from fluctuating power demand or to
supply power from efficient switching regulators instead of
linear regulators.1 The passive circuit components needed
for these operations are large and must be placed on the
Printed Circuit Board (PCB); we elaborate on this concept
as follows:

Noise-free power delivery: The power consumption
of a processor depends on micro-architectural events, and
a power delivery system must handle the fluctuation gen-
erated by a variable workload. High current fluctuation
generates voltage drop in the supply input (𝑉𝐷𝐷) due to
parasitic inductance from the die, package, and PCB (i.e.,
𝑉𝑑𝑟𝑜𝑝 = 𝐿 𝑑𝐼

𝑑𝑡
) [44], [45].

Efficient power delivery: The most common reason for
leaving internal voltages (e.g., 𝑉𝑐𝑜𝑟𝑒) exposed comes from a
system’s need for energy efficiency at run-time. A device can
run from both linear (e.g., LDOs) and switching regulators
(e.g., buck converters). Switching regulators are inherently
more efficient for meeting variable demands as they control
voltage levels by changing the duty cycle of a pulse which is
then filtered out to a stable voltage using passive electronic
components such as diodes, inductors, and capacitors, before
feeding it to the CPUs and memories.

As mentioned, the passive components are placed out-
side the SoC to save the die area, manage heat, avoid
timing violations, and maintain a wholly-digital process.
Figure 4a illustrates a power supply seen in typical SoCs.
The duty cycle of the generated pulse from the switching
circuit controls 𝑉𝑐𝑜𝑟𝑒. Caches (and most other SRAM) are
tightly coupled with the CPU core and, by default, draw
energy from the same internal power rail (i.e., 𝑉𝑐𝑜𝑟𝑒). Our
observation is that removing the inductive component while
keeping the supply voltage at a nominal level using an

1. Microcontrollers usually boot from internal Low Drop-Out (LDO)
regulators, then switch to switching regulators (if available) to save energy
due to their power efficiency compared to LDOs.

external power supply (Figure 4b) allows direct control to
the SRAM power supply rail, bypassing complex power
supply circuits that sit between 𝑉𝐷𝐷 and the internal power
rail that feeds SRAM.

C2: Capture SRAM’s power-on state from software.

Processors allow access to SRAM’s power-on state like
any other memory read operations if it is the main mem-
ory (e.g., microcontrollers) or memory-mapped cache (e.g.,
RISC-V architecture [81]). Some processors do not provide
access to their caches directly using a memory-mapped
interface, such as Cortex-A profile processors. However, we
find that these processors provide coprocessor instructions
to debug cache coherency issues and low-level memory
translation errors [8]. ARM coprocessors are capable of
performing maintenance operations without enabling the
caches and regardless of the cache lines’ validity. These
operations allow direct access to the uninitialized states of
cache-lines even if they are invalid at startup.

C3: Reduce contamination of SRAM power-on state.

The ability to read SRAM’s state directly is not enough;
an attacker must be able to capture SRAM’s power-on state
before it is overwritten—intentionally or otherwise. We ob-
serve that processors do not erase the power-on state as part
of the hardware reset sequence, as it does not provide any
clear benefit. In fact, there are a few downsides to executing
power-on state erasure through hardware or software.

On-chip SRAMs can be large, ranging from a few kilo-
bytes to a few megabytes, and distributed in many banks.
Iterating over a large memory at a word or line granularity
adds significant time to a processor’s boot-up. Also, it is not
clear (outside of preventing our attack) what value clearing
all of a device’s SRAM has.

Another deterrent for SRAM initialization is the fact that
SRAM power-on states have numerous security applications.
First, weak cells in an SRAM array capture randomness
from the operating noise, which a system uses as a source
for random number generation (TRNGs) [32], [67]. Sec-
ond, Strong cells carry unique hardware characteristics that
serve as the foundation for Physical Unclonable Functions
(PUF) [50], [27], [90], fingerprint generations [32], [16].
Third, the behavior of these cells changes over time due to
aging, which is leveraged in counterfeit IC detection [52],
[92]. Access to the uncontaminated SRAM power-on state
is essential for these applications. These reasons are why
processors do not initialize the SRAM [5] as part of their
boot-up sequence.

In summary, unrestricted electrical access to an
SRAM’s power bus and software-accessible, uncon-
taminated power-on state lead to our analog-domain
attack that makes it possible to leak secrets from a
secure memory area.

Target

Power control
board

Debugger

Power control
board

Debugger

Thermal chamber

Figure 5: A diagram illustrating the high-level configuration of the
experimental setup.

5. Attack Evaluation
This section discusses our baseline experimental setup,

and the following sections (§6, §7, §8) show the execution
of long-term data remanence attacks on three different sce-
narios.

5.1. Setup and Target Devices
Figure 5 illustrates a high-level block diagram of our

experimental setup, which automates the following tasks:
• Controls experiment temperature and a target’s core

voltage at different stages of the attack execution.
• Loads software to a target when needed.
• Provides access to the target’s memory through a de-

bugger or in-system power-on state extraction software.
Figure 6 shows the essential parts of our experimental

setup. The in-house power control board manages different
voltage levels while the debugger provides access to the
target’s internal resources during power-on state extraction.
To induce controlled thermal stress, we use a thermal cham-
ber from TestEquity [87]. As mentioned in Section 2, some
cells are susceptible to operational noise (e.g., temperature,
power supply noise, etc.) and behave unpredictably. We
model their probabilistic behavior using multiple trials (i.e.,
power cycles) and calculate a representative power-on state
for each cell using majority voting. For every target device,
we extract the power-on state 51 times, which, by Bernoulli
Trials, filters out (> 99%) the impact of noise. The system
remains at a power-off state for 5 seconds between power
cycles to discharge all the capacitance in the system, and
all of our experiments extract power-on states at 25◦𝐶 and
a target’s nominal supply voltage.

The list of our target hardware includes a wide range
of devices from different silicon vendors, including NXP,
Broadcom, Microchip, and Texas Instruments (see Table 1).
We test the targets for their power-on state accessibility,
debugging techniques, and aging acceleration methods.

5.2. Tuning Stress Conditions to Enhance Accuracy
To find an acceleration condition that maximizes re-

trieved information accuracy, we study SRAM’s response

Access to uncontaminated AgingSystem-on-Chip Core SRAM size TrustZone power-on state acceleration Manufacturer

ATSAML11E16A [59] ARM Cortex-M23 16KB ✓ ✓ ✓ Microchip
LPC55S69JBD100 [62] Dual-core ARM Cortex-M33 320KB ✓ ✓ ✓ NXP
M263KIAAE [21] ARM Cortex-M23 96KB ✓ ✓ ✓ Nuvoton
M2351SFSIAAP [19] ARM Cortex-M23 96KB ✓ ✓ ✓ Nuvoton
M252KG6AE [20] ARM Cortex-M23 32KB ✓ ✓ ✓ Nuvoton
M251SD2AE [20] ARM Cortex-M23 12KB ✓ ✓ ✓ Nuvoton
STM32L562 [85] ARM Cortex-M33 40KB ✓ ✓ ✓ STMicroelectronics
BCM2837 (RPi3) [69] Quad-core ARM Cortex-A53 L1:128KB, L2:512KB ✓ ✓ ✓ Broadcom
BCM2711 (RPi4) [70] Quad-core ARM Cortex-A72 L1:320KB, L2:1MB ✓ ✓ ✓ Broadcom
R7FS1JA783A01CFM [25] ARM Cortex-M23 32KB ✗ ✓ ✓ Renesas Electronics
MSP432P401 [35] ARM Cortex-M4 64KB ✗ ✓ ✓ Texas Instruments
MSP430G2553 [36] MSP430 single cycle 0.5KB ✗ ✓ ✓ Texas Instruments
EFM32WG990F256 [82] ARM Cortex-M4 32KB ✗ ✓ ✓ Silicon Labs

Table 1: A list of devices that we verified are susceptible to our long-term data remanence attack.

Figure 6: Pictures of our experimental setup. Detachable target
hardware sits on a CW308 baseboard [34] (bottom right), which is
connected to the power-control board and debug hardware (top right).

by filling three SAML11 [59] SoCs with all 0s (to allow
static aging of cells) and exposing them to different aging
conditions. Figure 7a shows an upward shift in the number
of 1s because stress-induced degradation inverts the power-
on state of a cell when we stress it with the power-on
state stored (§2). Following a logarithmic trend, the 0 → 1
conversion rate (i.e., aging-induced change) reduces over
time. We observe an insignificant change in the number of
1s in the SRAM when it operates under nominal voltage
and elevated temperature (𝑉𝑐𝑜𝑟𝑒 = 1.2𝑉 and 𝑇 = 85◦𝐶),
but elevated voltage (𝑉𝑐𝑜𝑟𝑒 = 4.8𝑉) combined with high
temperature (𝑇 = 85◦𝐶) increases the acceleration signifi-
cantly. Although SoCs allow operating temperatures higher
than 85◦𝐶, we keep it at the standard industrial limit to
stay within a realistic attack scenario as other components
in the target system (e.g., soldering) become vulnerable to
damages beyond this temperature.

To understand how strong and weak cells behave under
stress, we conduct another experiment with three SAML11
devices. We write all 1s to one chip and all 0s to another
chip and expose them to stress (𝑉𝑐𝑜𝑟𝑒 = 4.8𝑉 and 𝑇 = 85◦𝐶)
for 16 hours, which allows us to observe how cells change
when stressed with both logic states. The third chip contains
its power-on state at nominal operating conditions (i.e., no

stress). Figure 7b plots the relation between pre and post-
stress bias. The SRAM with a power-on state in it and
nominal operating condition still contains weak cells (cells
along the diagonal line). Chips that undergo accelerated
aging have no weak cells present in both pre-stress and post-
stress stages. When a weak cell undergoes stress, the data-
directed aging aligns its power-on state with the complement
of the data; in the following sections (§6, §7), we will
show how this observation allows accuracy improvement in
retrieved information.

We cannot complement the power-on state for all the
cells: the relative power-on speed between the inverters (§2)
can be so different that the aging-induced degradation fails
to reverse the relation. This phenomenon introduces errors in
information retrieval. Longer stress time improves the error
performance of the attack, and to provide a better picture
of how stress time affects the accuracy of retrieved data,
Table 2 provides accuracy vs. stress time for LPC55S699
and SAML11 devices, respectively. It is evident that longer
stress time increases accuracy for both devices, although
the rate of changes decreases over time.

Stress time (hours) 8 16 24
Accuracy 77.34% 81.78% 87.99%

(a)
Stress time (hours) 2 4 8 16

Accuracy 88.23% 90.66% 95.67% 96.11%

(b)

Table 2: Effect of stress time on the retrieved information accuracy in
(a) an LPC55S69 [62] device. and (b) a SAML11 [59] device.

As mentioned before, the magnitude of aging-induced
degradation varies across device families. For example,
we observe an 18% difference in accuracy between an
LPC55S69 and SAML11 after 8 hours of stress at their
respective acceleration voltages (§6 and §7), showing sig-
nificant accuracy variation across device classes. When ex-
posed to the same aging condition, the variation is much less
within the same device class (but among different chips).
This variation purely comes from the fabricated transistors’
process variation, not on-chip or off-chip circuit designs. For
example, we observed a 2% variation in the retrieved data
accuracy on LPC55S69 devices when they go through the

0 2 4 6 8 10 12 14 16
Time (Hours)

50

60

70

80

90
N

um
be

r
of

 1
s

(%
)

Vcore = 4.8V, T = 85 C
Vcore = 4.8V, T = 25 C
Vcore = 1.2V, T = 85 C

(a)

0.0 0.2 0.4 0.6 0.8 1.0
 Pre-stress bias

0.0

0.2

0.4

0.6

0.8

1.0

 P
os

t-
st

re
ss

 b
ia

s

Stress logic 1
Stress logic 0

(b)

Figure 7: (a) Response of a SAML11 chip when exposed to stress at
different stress conditions with extremely biased software (i.e., all 0’s).
(b) Stress response of cells with different logic states.

same stress condition (i.e., voltage, temperature, and stress
time).

The main takeaway is that, although the fundamen-
tal vulnerability of long-term data remanence remains un-
changed, the accuracy of secret retrieval varies based on
the manufacturing technology node and underlying circuit
structure of the device. As a result, achieving maximum
accuracy requires device-family-specific fine-tuning of stress
variables, such as total stress time and acceleration voltage.

6. Attack #1: Exfiltrate an AES key from
TrustZone
In this section, we examine a threat model where

a non-secure user exploits SRAM’s long-term data rema-
nence to extract a secret key from the Secure World. For
demonstration, we write a secure application that provides
encryption/decryption services to the Normal World using
NSC functions. The secure application receives encrypted
texts from a non-secure application through NSC functions
and decrypts them using an on-chip AES engine and a
128-bit secret key. This example emulates a communication
scenario from outside of the chip where the Normal World
is responsible for receiving information, performing error
correction, and then forwarding the encrypted information
to the Secure World. This scenario represents an extreme
version of secure executions where TrustZone and on-chip
cryptographic hardware guarantee the safety of all opera-
tions.

Memory type Base address Size (bytes) Security attributes
Flash 0x00000000 0x7C00 Secure
Flash 0x00007C00 0x0400 NSC
Flash 0x00008000 0x8000 Non-secure
SRAM 0x20000000 0x2000 Secure
SRAM 0x20002000 0x2000 Non-secure

Table 3: The memory map of our system. A secure application (SW1)
uses the memory area marked as secure and NSC, whereas the non-
secure area belongs to the non-secure application (SW2).

To implement the above attack, we use a device with
TrustZone and an on-chip cryptographic accelerator; a
SAML11 microcontoller [59] satisfies these requirements.
This SoC has a Cortex-M23 core with TrustZone extension,
and it features an array of security hardware, including
an on-chip crypto-engine (CRYA) designed for IoT ap-
plications [60]. SAML11 devices allow setting three De-
bug Access Levels (DAL), which controls the information
accessibly by a debugger. A device with DAL2 setting
allows access to any part of the system. A secure user
with DAL2 access programs the device and sets the debug
access level to DAL1, which prevents the debugger from
accessing the secure part of the system. A non-secure user,
however, can escalate the debug access level by erasing the
entire chip (both volatile and non-volatile memory). This
feature prevents access to secure software’s code or data
without compromising the debugging features available to
a non-secure user. Table 3 lists the memory map of our
demonstration system.

Figure 8 illustrates the flow of the attack. A secure
user with DAL2 access programs the secure software (SW1)
in the device (1) and then restricts the access level to
DAL1(2). At this stage, the device’s secure memory is
inaccessible to a non-secure application. A non-secure user
programs software (SW2) that requests services from SW1
using NSC functions (3). The non-secure user exposes the
device to stress for 16 hours at an elevated voltage (4x)
and temperature (3.4x)(4). Then, the non-secure user erases
the full chip to escalate the debug access level from DAL1
to DAL2 (5) and extract power-on states of the SRAM
(6). Note that TrustZone protects the memory by erasing it
before increasing a debug level. The final stage of the attack
involves complementing each retrieved bit from SRAM and
running a scenario-dependent error correction scheme to
construct the key from the memory dump (7).

Figure 9 plots the heatmaps of the pre-stress memory
dump and retrieved information.2 We locate different sec-
tions (e.g., global variables, stack, heap, etc.) of the secure
software from the compiled binary and compare it with
the retrieved data. The accuracy of the retrieved data is
97.2%.

Error source: The mean error in the retrieved words is
2.8%. We report that the words that compose the AES key
contain no error; however, we consider the mean error in

2. We store two blocks of data, one with all 0s (black stripe) and the
other with all 1s (white stripe), in the non-secure part of the memory
to investigate whether there are any discrepancies between the imprinting
process in the secure and non-secure area; our results indicate no difference.

Load secure
application

(SW1)

Load non-secure
application

(SW2)
Stress @85oC

and 4.8V
Full chip

erase

Extract
power-on

state
Post-process

Set DAL1

1 2 3 4 5 6 7

Figure 8: An attack model for Secure World AES key extraction.

Stored data Power-on state Interpreted data Correctness % of bits Transition typePre-stress Post-stress
0 0 0 1 ✗ 2.19% Flipping failure
0 0 1 0 ✓ 30.31% Flipping success
0 1 1 0 ✓ 23.11% Reinforcing
1 0 0 1 ✓ 26.41% Reinforcing
1 1 0 1 ✓ 17.38% Flipping success
1 1 1 0 ✗ 0.61% Flipping failure

Table 4: The cell power-on state changes observed in AES key retrieval attack.

all of our further calculations to keep it applicable to most
cases. By analyzing different types of pre-stress to post-
stress changes in the power-on state, we investigate the error
source (see Table 4). Data in an SRAM cell either reinforces
the power-on state or weakens it by affecting the relative
current driving strength of inverters (§2.2). Manufacturing
variation can make an SRAM cell so strongly biased towards
a logic state that stress-induced degradation fails to flip the
relative speed of the inverters. This phenomenon leads to
errors in post-stress information retrieval. The red lines in
Figure 10 illustrate such transitions.

Key extraction scenario #1: We assume the most
common case is when an attacker cannot access the device
before a secure user programs it. That is, the attacker has no
access to the pre-stress power-on values for a target device.
In this case, the retrieved key is a corrupted version of the
original key with a 2.8% error. An exhaustive key search
within 𝑛 = 4 bit Hamming distance (128 × 0.028 ≈ 4 𝑏𝑖𝑡)
of the original 𝑁 = 128 bit key produces an expected key
search space (𝐿) ≈ 223 (see Equation 1), which a modern
computer covers in seconds.

𝐿 = 𝑙𝑜𝑔2 [
𝑛∑︁
1

(
𝑁

𝑁 − 𝑛

)
] (1)

Key extraction scenario #2: In an attack model where
a non-secure user has access to a target before shipping it
to the secure user for proprietary software programming, an
attacker (i.e., the non-secure user) can further reduce the
error using enrolled power-on states of a target device.

As discussed above, errors in the retrieved keys come
from the cells that retain their pre-stress power-on state
even after exposure to stress (see red lines in Figure 10). A
probabilistic interpretation, instead of binary 1/0, of a cell’s
post-stress value improves the accuracy of the retrieved
data. If a cell powers on at a defined logic state 100%
of the time across trials at pre-stress and post-stress, it is
impossible to correct the error generated from it. On the
other hand, pre-stress strong behavior and post-stress
weak behavior reveal the cell’s logic state during the
stress. These types of cells contribute to 45.25% of the total
erroneous interpretation: with enrolment power-on, we can

Secure

Non-secure

64 bytes

0x20002000

0x20003FFF

0x20000800

Pre-stress SRAM snapshot Retrived information
64 bytes

....6c6c2068696d2077656c746869736973617365637265746b65794.....

....6c6c246a696d2077656c746869736973617365637265746b65799.....

AES Key

Figure 9: Heatmap of the pre-stress memory dump (left) and post-
stress retrieved information (right). Note that the first 2KB of the
SRAM is reserved for the on-chip ROM.

correct this error. For example, let us assume a cell always
powers on at 1 before stress (i.e., strong 1 cell). We expose
it to stress, and the cell’s power-on state becomes 1 and 0,
80% and 20% of time, respectively (i.e., weak cell). Such
weakening of a cell’s bias happens if it undergoes stress with
its power-on state. Therefore, we interpret this cell contains
1 during stress as opposed to 0. We apply similar corrections
to the strong 0 cells that become weak cell after stress. These
considerations reduce the error from 2.8% to 1.27%, and at
this error at this level, theexpected key search space comes
down to ≈ 213.

In addition to the SAML11 device, we launch this AES
key exfiltration attack in a modern Cortex-A72 general-
purpose processor in Section 9.

7. Attack #2: Exfiltrate Proprietary Firmware
from TrustZone
SRAM provides lucrative benefits that motivate system

designers to utilize them as a main memory for firmware

10 0

01 1

Pre-stress Post-stress

0

1

1

0

Figure 10: Data-directed aging response of an SRAM cell. When an
SRAM cell stores the complement of its power-on state during stress,
the post-stress power-on logic remains unchanged (dotted green lines).
If it stores the same logic as its power-on state, the post-stress power-
on logic flips (solid green lines). Contrary behavior (red lines) causes
post-stress data interpretation errors.

execution. For example, cores execute instructions at a much
faster speed when in on-chip SRAM compared to other
common memories, such as Flash and DRAM. In addition,
encrypting software while stored off-chip or Flash and de-
crypting it only in the on-chip memory prevents software
piracy. Therefore, code executes faster and secures itself
from low-effort physical attacks when in an on-chip SRAM.

Exposing proprietary firmware, our attack challenges the
security of software that executes from an on-chip SRAM.
For demonstration, we use an LPC55S69 device, a dual-
core Cortex-M33 microcontroller with TrustZone security
extension, from NXP semiconductor. TrustZone and other
advanced hardware security features, such as crypto accel-
erators and PUFs are part of CPU0, while CPU1 serves as
a secondary core in support of CPU0.

Memory segments Base address Size (bytes)
CPU0 RAM 0x20000000 0x11000
CPU1 RAM 0x20012800 0x31800
Shared RAM 0x20011000 0x01800
CPU0 Flash 0x00000000 0xa0000

Table 5: Memory partitions between CPU0 and CPU1.

We design firmware for both cores, and they stay in a
TrustZone-guarded secure Flash region. At startup, CPU0
initializes the system and loads the CPU1’s firmware in
the SRAM, which reduces the need for simultaneous Flash
access by the cores, improving the system’s security and
performance. Once initialized, both cores start executing
their respective firmware from two memories — Flash and
SRAM. The entire memory region is marked as secure and
CPU1 is the secure bus master; Table 5 lists the memory
partitions for this experiment.

With a target to expose the TrustZone guarded firmware
from the SRAM, we expose the device to stress by elevating
voltage and temperature (𝑉𝑐𝑜𝑟𝑒 = 5.5𝑉 and 𝑇 = 85◦C) for 24
hours. Then, we erase the full chip to escalate debug level
and extract the power-on state of the SRAM. We compare
the retrieved binary of each 32-bit word (instruction length)
with a pre-stress memory dump and plot the fractional
Hamming distance in Figure 11. Note that the pre-stress
memory dump is for analysis only, i.e., it is unavailable
to an attacker. As the firmware for CPU1 stays in the
SRAM statically, the power-on states of the cells in that
region align with the complement of the stored firmware

0 10000 20000 30000 40000 50000 60000 70000
32-bit word address

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

al
 H

am
m

in
g

di
st

an
ce Start (0x20012A54) End (0x2001545C)

SRAM base address 0x20000000

Figure 11: Post-stress fractional Hamming distance in each word (32-
bit) of the SRAM (address base 0x20000000). CPU1’s firmware is
within 0x20012800 to 0x2001545C, showing how firmware burns-in in
the SRAM’s power-on state.

bits, which leads to lower fractional Hamming distance (and
error) in that area (0x20012A54 to 0x2001545C). The
area where the fractional Hamming distance is around 0.5
contains a power-on state during stress. Table 6 shows the
pre-stress and post-stress transitions among cells’ power-on
states.

Attack scenario #1: The mean error in our 3-device
experiment is 12.4% (see Table 7). Unlike keys, propri-
etary firmware is the same across devices, which allows
an adversary to attack several devices running the same
firmware and use majority voting on extracted firmware
bits to reduce errors. The error in the retrieved data is
largely random, which allows us to estimate the error with
Bernoulli Trials in a scenario where an attacker has access
to multiple devices. Theoretically, the error becomes 4.2%
when the attacker has access to just three devices, each with
≈ 12.4% random errors. Our 3-device experiment retrieves
the CPU1 firmware with ≈ 4.2% error, which is the same
as the expected theoretical result. We recreate ≈ 45% of the
machine code without applying any device or architecture-
dependent noise filtering.

Attack scenario #2: Similar to Section 6, we con-
sider an attack scenario where an attacker has access to
devices’ pre-stress power-on values. Access to enrolment
data reduces errors in the retrieved firmware from individual
target devices (see Table 7), which leads to much higher
accuracy when combined with multi-device error correction.
The firmware extraction accuracy reaches 98.29%, and
at such high accuracy, we recreate 70.90% instructions
error-free instructions—without applying more advanced
hardware- or instruction-set-aware error correction.

An SRAM’s stress-induced degradation shows spatial
variation in the LPC55S69 device. Figure 12 plots the
percentage of 1s in each 0.5KB block in the SRAM after a
device goes through stress with all 0s. We observe different
levels of aging responses at 64KB intervals. An LPC device
has 5 SRAM blocks; the first four blocks are 64KB each, and
the last block is 16 KB [62]. Therefore, firmware retrieval
accuracy varies based on which SRAM bank it maps to—

Firmware bit Pre-stress Post-stress Interpreted firmware bit Correctness % of bits Transition typesLPC1 LPC2 LPC3
0 0 0 1 ✗ 7.80% 6.31% 7.08% Flipping failure
0 0 1 0 ✓ 23.01% 22.23% 24.23% Flipping success
0 1 1 0 ✓ 25.83% 28.04% 25.28% Reinforcing
1 0 0 1 ✓ 22.23% 20.41% 23.51% Reinforcing
1 1 0 1 ✓ 16.54% 15.93% 15.49% Flipping success
1 1 1 0 ✗ 4.59% 6.97% 4.04% Flipping failure

Table 6: Pre-stress and post-stress cell transitions of three LPC devices.

LPC1 LPC2 LPC3 Combined
Scenario # 1 accuracy 87.70% 86.70% 88.50% 95.82%
Scenario # 2 accuracy 93.20% 91.76% 93.36% 98.29%

Table 7: Firmware extraction accuracy for three target devices.

40

60

80

100

Internal SRAM boundaries
Post-stress
Pre-stress

0 100 200 300 400 500
Words (512 bytes)

0

2

4

N
um

be
r

of
 1

s
(%

)

SRAM base address 0x20000000

Zeroized by the Boot ROM

Figure 12: SRAM banks in the LPC device show different levels of
stress-induced degradation based on their locations inside the die.

opening the door to the attacker forcing the placement of
target code/data3.

This section shows how UntrustZone extracts proprietary
firmware from a Cortex-M33’s SRAM. Combining with the
previous attack (§6), we demonstrate the attack’s capabil-
ity using a general-purpose processor, Cortex-A72 core, in
Section 9.

8. Attack #3: Exfiltrate Secrets from Cache
Many systems and architecture papers consider the CPU

cache as the panacea against external memory disclosure
attacks [23], [18], [97]. This notion stems from the fact that
on-chip SRAM are safe from physical attacks, motivating
encrypting external memory-bound transactions as a stan-
dard across trusted execution environment implementations.
We show that long-term data remanence challenges this
assumption by revealing secrets held even in the private
cache of a CPU.

The ARM CPU’s cache lines are shared among the
Secure World and Normal World: a Secure World application
protects its cache line from Normal World’s application
using an NS security flag. When a cache line carries a
secure tag, the line is not available in any Normal World

3. This scenario resembles Flip feng shui [72] attack where an attacker
Virtual Machine(VM) allocates memory such that memory deduplication
process merges an attacker page with victim VM’s page, facilitating row
hammering.

software, including the operating systems. Our attack relies
on the analog-domain changes of the constituent transistors
of a cache, bypassing the security attribute of a cache
line. First, we use a quad-core ARM Cortex-A53 processor
(BCM2837) that comes with standard Raspberry Pi 3 Model
B(v1.2) to demonstrate this attack. Then, we summarize all
three attack scenarios with a Cortex-A72 processor.

8.1. Accessing Cache’s Power-on State
Raspberry Pi (RPi) provides pre-compiled binary blobs

that boot an embedded GPU core from external storage de-
vices, e.g., an SD card. It follows a boot chain that involves
a combination of both on-chip and off-chip boot instruction
sequences. First, the embedded GPU (VideoCore IV) boots
from an on-chip ROM, which then loads a pre-compiled
binary, bootcode.bin, in a shared (with ARM cluster)
L2 cache. Second, it executes start.elf from an off-chip
Non-Volatile Memory (NVM), which loads a kernel4 [68].
We introduce another stage of firmware before the ARM
cores start executing a kernel and place it along with the
pre-compiled binaries in the external NVM. Our firmware
ensures cores startup in aarch64 mode at EL3 exception
level and utilizes CP15 coprocessor to extract L1 caches
at power-on regardless of the cache lines’ validity. CP15
instructions such as msr s3_3_c15_c4_1, <Xd> and
msr s3_3_c15_c4_0, <Xd> allow reading i-cache and
d-cache by iterating over ways, sets, and offsets [7]. Here,
Xd is a 64-bit general CPU register.

A Cortex-A53 allows invalidating cache lines by ex-
ecuting IC IVAU and DC ISW instructions for i-cache
and d-cache, respectively. Invalidation prevents a CPU
from accessing a line but does not reset the cached data
in data RAM. For example, IC IVAU instruction invali-
dates the entire L1 i-cache by resetting all i-cache tags to
0x7FFFFFFF. However, the data in the cache lines remain
unmodified, but the processor ignores them (i.e., no cache
hit).

We write a tool that programs and controls the core
through openocd [71] and JTAG interface. Cache’s power-
on state extraction tool performs the following tasks:

1) Disables L1 memories (e.g., caches, TLBs,) and makes
the core busy-wait (e.g., spin: b spin) to eliminate
cache’s power-on state contamination and to avoid
hitting any undesired exceptions, respectively.

2) Establishes JTAG communication and halts all cores.

4. The source codes for bootcode.bin and start.elf are confi-
dential, and we do not have access to them.

3) Loads a cache extraction software5 in the main memory
(i.e., SDRAM). This software reads the contents by
iterating over the entire target cache and dumps it in
the SDRAM.

4) Transfers the SRDAM contents to a debug host (e.g.,
PC) through JTAG interface.

5) Repeats steps 3 and 4 for all the target cores and caches.

8.2. Attacking ARM Core’s L1 Cache
To apply accelerated stress on a device, we need access

to the 𝑉𝑐𝑜𝑟𝑒 pin(s). The detailed schematic of the Raspberry
Pi boards and pin description of BCM2837 SoC are not
publicly available. However, a closer examination on public
RPi3 reduced-schematic [26] reveals that an RT8088A [73]
switching regulator supplies 1.2V to the ARM cores and
internal SRAM; this a typical power management scheme in
almost any modern system [53]. The output of the switching
regulator passes through an inductor (L3) before reaching
the core voltage pins (§4). We remove this inductor from the
board (while maintaining the live system voltage externally),
which disconnects the switching regulator from supplying
power to the SoC. A probe connected at the test pad PP58
of RPi3 from our power-control board manages the voltage
level at the SoC’s 𝑉𝑐𝑜𝑟𝑒, which allows us to elevate the
voltage supplied to the SRAM.

For attack demonstration, we fill out the caches of all
the cores with preset instructions fetched from the SDRAM
and expose the system to stress. At an acceleration voltage
𝑉𝑐𝑜𝑟𝑒 = 2.2𝑉 and 𝑇 = 85◦𝐶, we extract contents of an
i-cache with 79.2% accuracy after 120 hours of stress.
Since our cache extraction software reads out invalid cache
lines at startup, it bypasses the TrustZone-enforced security
boundary.

9. Unifying the Attack Scenarios
Consolidating the attack scenarios into one system, we

summarize UntrustZone using a newer ARM SoC, Broad-
com BCM2711, which has a quad-core Cortex-A72 CPU (
aka Raspberry Pi 4) [70]. To show the generality of Untrust-
Zone attack by combining all the attack scenarios described
above with an overarching threat model that assumes secret
data (attack #1) and proprietary software (attack #2) are in
the on-chip cache (attack #3).

The first step in the UntrustZone deployment phase is
to identify the acceleration voltage pin that is located near
the power management integrated circuit (𝑀𝑋𝐿7704); this
chip drives the 𝑉𝑐𝑜𝑟𝑒 pin (TP15 pad in the PCB [65]).
As described in section 5.1, we determine the acceleration
voltage with guidance from the datasheet [65] and exper-
imentation. While the software and toolchain needed for
power-on extraction remain the same as BCM2837 (§8), the
acceleration voltage is 1.62V (2.025× nominal voltage).

At attack deployment, the victim cores 0 and 1 run on-
chip encryption/decryption using a 128-bit AES engine; this

5. The software is in assembly (aarch64) to tightly control the execu-
tion.

AES does not use memory access once loaded into the
L1 cache due to its implementation using vector registers
and on-demand calculation of the sub-keys and other inter-
mediate states.6 Encryption/decryption operations using this
AES never save intermediate states in the off-chip memory,
making it secure against external memory attacks, such as
cold boot [31]. It is essentially the same as attack #1 (§6),
where the cryptographic service is provided by the on-chip
secure state of a processor. The other two cores execute
typical software operations while keeping both software and
data in the cores’ L1 private cache, making it inaccessible
from the RAM in plain text (i.e., attack #2).

The AES key extraction accuracy reaches 93.2% after
120 hours of aging, and we observe similar results in
the other two cores’ instruction (93.3%) and data (93.4%)
extraction. Similar accuracy across different cores and cache
types is expected as they share the same power bus, hence
experience the same accelerated stress. The mean accuracy
of all four cores (both i-cache and d-cache) reaches ∼ 95%
after 168 hours of stress.

10. Countermeasures
Long-term data remanence is an analog-domain attack

that exploits device-level changes to leak on-chip secrets. A
viable defense needs careful consideration of both software
and hardware avenues. We provide a qualitative analysis
of the possible defense mechanisms and their expected
implications on the system’s design and performance.

10.1. Software Defenses
10.1.1. Initializing the SRAM at startup

SRAM’s power-on state is the information carrier for
this attack as it provides digital access to the data-directed
changes in the analog domain. Therefore, initializing the
entire SRAM as a part of the secure boot process prevents
UntrustZone attack. This type of countermeasure come with
two potential downsides:

• SRAM initialization as part of CPU power-up sequence
stretches startup time by a few hundred cycles to thou-
sands of cycles. For example, an LPC [62] device at its
highest boot speed (96MHz) takes 640𝜇𝑠 to initialize
its 320KB SRAM (61440 cycles), which is a significant
delay for embedded applications.

• Initializing an SRAM’s power-on state prevents secu-
rity algorithms (e.g., TRNGs [32], PUFs [55], [75],
[95], recycled IC detection [29]) from utilizing hard-
ware uniqueness and randomness at run-time.

Instead of using CPU cores to reset, a more flexible and
efficient option is to utilize self-test engines (i.e., MBIST)
to reset the SRAMs with an option to configure it according
to a system designer’s need.

6. The implementation is stackless and in assembly, which allows doubt-
free post-stress error calculation.

10.1.2. Scrambling the SRAM data at run-time

Balancing the stress between inverters in an SRAM cell
is a potential software solution that prevents imprinting
data in the aging-induced asymmetry. This scheme requires
active run-time support where software periodically inverts
or scrambles the stored bits [52]. Our attacks drive the core
voltage well beyond the nominal, which freezes a proces-
sor’s execution, making this software defense ineffective.

10.2. Hardware Defenses

10.2.1. Preventing aging acceleration

Aging acceleration is the key to launching UntrustZone
attack, which comes from thermal and electrical stress.
Averting thermal acceleration is relatively simpler and can
be done with help from modern processors’ temperature
sensing and management hardware, such as Thermtrip [1]
and Frequency throttling. Thermtrip in Intel CPU prevents
damaging processors from operating under excessively high
temperatures [1], and frequency throttling is common across
all high-performance CPUs to keep the devices under their
thermal limits. Orienting these mechanisms to detect ad-
versarial aging and erasing sensitive information upon such
detection can be a solution to eliminate the thermal com-
ponent of the acceleration. Given that a device’s thermal
operating condition varies depending on its applications, a
combined software and hardware solution is necessary to
provide configurable solutions to thermal stress tolerance.

Electric stress is the driving factor in acceleration and
is much harder to prevent (§2.3). A device needs to en-
force strict operating voltage without any error margin,
which is impractical because it requires modeling a power
distribution network’s behavior well before manufacturing.
Process variations, the unpredictability of run-time noise,
and the need for multiple operating modes complicate such a
strict nominal voltage limit, making most devices respond to
accelerated aging to some degree. We observe the following
two types of behaviors in target devices that limit accelerated
aging using voltage:

• Bypassing the excess energy through circuits before
reaching the core: As a standard design practice, pins
in a chip include measures for over-voltage (e.g., ESD)
and reverse-polarity protection. A chip’s behavior in
these circumstances depends on the design and imple-
mentation of the underlying circuitry. For instance, a
BCM2837 draws > 2.5A current when core voltage
𝑉𝑐𝑜𝑟𝑒 goes beyond 2V (1.67×). Such high current con-
sumption indicates an over-voltage prevention mecha-
nism bypasses excess power to the ground by clipping
off the excess voltage.

• Erasing the volatile memory contents: A hardware
measure that resets the CPU and memory beyond rec-
ommended voltage is also observable in devices. In ex-
perimentation with M2351SFSIAAP [19], we observe
that the device resets the I/O registers and SRAMs if
the voltage rises beyond 2.3V in its core voltage pin

(LDO_CAP)7.
While these protection mechanisms prevent over-

voltage, they kick in only when to voltage crosses the design
margin, which is higher than the operating voltage limit. It
reduces the acceleration, but longer stress time compensates
for the slower acceleration.

10.2.2. Restricting debug access
The proposed attack requires debug access or loading

a modified kernel (after resetting TrustZone and deleting
the contents of the memory in Cortex-M devices) to read
out uninitialized SRAM values from secure memory area.
Debug authentication features [61] or mandating a trusted
boot process should thwart reading out imprinted SRAM
data, ultimately preventing the attack. Disabling debug per-
manently complicates return material analysis and software
update process in lower-end devices, which are essential
methods to analyze a system failure and product improve-
ment [79]. Note that there are attacks that bring the device
to its factory reset condition or circumvent the disable debug
settings [88], [41].

11. Discussion
Our experiments with a range of SoCs uncover a

general trend among different devices that we expect to
hold for relatively more complex processors employed
by desktop- and server-class systems. First, an increasing
number of devices— including desktop and server-class
processors— allow access to their caches directly either
through a memory-mapped interface (e.g., RISC-V [81])
or co-processor interface (e.g., Cortex-A53 [8], Cortex-
A78 [48], Cortex-A72 [47]). Such architectural flexibility
and feature offer several advantages, such as the ability to
execute software quickly from on-chip memory, ensuring
run-time security against off-chip memory attacks, and facil-
itating debugging features for low-level memory translation
issues.

Second, the requirement for a robust and low-noise
power supply from external sources becomes essential as
hardware complexity increases. Current fluctuation in com-
plex processors (e.g., Cortex-A53) is significantly more
compared to embedded devices. Therefore, we expect com-
plex processors’ power delivery systems to be similar to the
device we assessed in our experiments.

Third, desktop- and server-class processors allow over-
clocking by elevating the supply voltage. This means the
door is open to using this access for accelerated imprinting
on other processors. For example, Intel Core and Intel Xeon
E processors allow operating at a nominal 0.9V, but they
allow voltage overdrive to at least 1.52V [37].

Fourth, voltage scaling lags behind geometric scaling,
which increases the electric field density in a device, making
smaller technology nodes more susceptible to aging-induced

7. The voltage at this pin is 1.2V when operating in Normal mode
(48MHz) and 1.26V in Turbo mode (64MHz), which leaves a room for
accelerating a device’s aging.

degradation. This trend leads to increased information leak-
age from SRAM manufactured using newer technology
nodes. For example, the accuracy of imprinted and retrieved
information from a 40𝑛𝑚 LPC device [24] is over 4x more
than that of a 130𝑛𝑚 [58] MSP430 [35], even when the
LPC device spends less than half the time having software
imprinted into SRAM’s analog domain.

Considering the attack enablers outlined in Section 4 and
the observed trends that extend to desktop- and server-class
processors, we anticipate that our attack methodology will
be applicable to those devices as well. Our analysis of Intel
SGX and AMD SEV indicates that these more sophisticated
TEEs need further experimental evaluation to determine the
impact of UntrustZone attack.

12. Related Work
Given the popularity of ARM devices, there is a sig-

nificant research drive to evaluate the security of ARM
TrustZone.

Exploiting Voltage and Frequency Management
Hardware: CLKSCREW [86] and VoltJockey [66] manipu-
late the energy management systems shared among multiple
cores to push it beyond the vendor recommended limit.
CLKSCREW manipulates the frequency, and VoltJockey ex-
ploits the voltage from a non-secure kernel driver to induce
timing faults in the secure cores so that it produces incorrect
computations. The authors show how an attacker bypasses
RSA-based signature verification and loads an untrusted
application into the TrustZone. These attacks apply only to
multi-core CPUs with shared dynamic voltage and frequency
management systems.

Exploiting Cache and DRAM: Secure World and Nor-
mal World share on-chip memory such as caches and Branch
Target Buffer (BTB). Cache allocation and eviction are not
restricted by the security attribute of a cache-line. That is,
hardware does not restrict a Normal world’s application
from evicting a cache-line that belongs to Secure World.
While this design decision optimizes performance, it leads to
numerous cache-contention-based side-channel attacks such
as ARMAgeddon [49], TruSpy [98], Cache storage chan-
nels [28], and Prime+Count [17]. Since the Branch Target
Buffer is a shared resource between the Secure and Normal
World, cache-contention-based attacks also apply [76]. BTB-
based exploits increase the spatial resolution of the probing
mechanism because the BTB stores information at byte
granularity rather than cache-line granularity [15].

The Rowhammer attack also impacts ARM TrustZone-
enabled devices [13], where a malicious kernel from the
Normal World generates high-rate memory read requests
close to a secure memory boundary. These high-rate read
requests corrupt an RSA private key in the secure memory
(i.e., DRAM), leading to faulty signature generation in the
Secure World. The comparison of the message and signature
in the Normal World leaks the RSA private key. Unlike
shared-on-chip-buffer-based side-channel attacks, keeping
secrets on-chip defeats Rowhammer attacks.

Exploiting Configurable Hardware: AMBA AXI inter-
face of TrustZone-enabled devices contains a security flag
(NS bit) for read and write channels in the main system bus.
This bit carries the security state of the CPU. Reconfigurable
hardware such as FPGA (e.g., Zynq-7000 [94]) can be
connected to the system’s main bus to allow flexible and
efficient hardware/software co-design. Benhani et al. show
that such heterogeneous hardware architectures are security
risks because malicious hardware in the FPGA fabric po-
tentially breaks ARM TrustZone security [56]. Jacob et al.
show that malicious hardware in the FPGA can interfere
with the SOC’s secure boot process, allowing a CPU to
load authorized kernel [38].

13. Conclusion
In this paper, we show how long-term data remanence is

a threat to hardware-backed secure computing environments.
Our attack shows, contrary to the assumptions of previ-
ous defenses, keeping secrets on-chip—even when guarded
by the hardware-level protections of a Trusted Execution
Environment—is insufficient to keep them secure when an
attacker has physical access to the chip. We implement and
validate the long-term data remanence vulnerability on a
range of devices spanning complexity, cost, performance,
age, and manufacturer. We then use the capability to carry
out three attacks. The attacks steal secret code and data from
TrustZone-protected main memory and on-chip cache lines.
Our results show how an attacker can efficiently imprint
software secrets into SRAM’s analog domain and reliably
retrieve those imprinted secrets through measurements of
SRAM’s power-on state. Our analysis of the defensive trade-
space suggests that a robust solution requires hardware and
low-level software modification.

Beyond exposing a universal weakness in secure com-
puting devices, this paper highlights a broader threat:
transistor-aging-based side-channels. While the circuits
community has long been aware of the effects of transistor
aging, their focus has been on its performance and reliability
impacts, not security. This paper shines a light on the rami-
fications of security of data-dependent transistor aging. We
believe this paper will inspire future researchers to uncover
other security issues related to transistor aging and new side-
channels that leverage the latent information left behind by
data-dependent transistor aging.

Responsible Disclosure
In accordance with the vulnerability disclosure guide-

lines, we reported our findings to ARM as well as the
manufacturers of the devices against which we validated
our attacks, including NXP Semiconductors and Microchip
Technology. We made this paper public only after ARM
released an architecture security advisory.

Acknowledgements
The project depicted is sponsored by the Defense Ad-

vanced Research Projects Agency. The content of the in-

formation does not necessarily reflect the position or the
policy of the Government, and no official endorsement
should be inferred. Approved for public release; distribution
is unlimited.

References
[1] https://www.intel.la/content/dam/www/public/us/en/documents/da

tasheets/pentium-dual-core-desktop-e2000-datasheet.pdf, accessed:
2023-7-15.

[2] M. A. Alam and S. Mahapatra, “A Comprehensive Model of PMOS
NBTI Degradation,” Microelectronics Reliability, vol. 45, no. 1, pp.
71–81, 2005.

[3] E. Amat, E. Amatllé, S. Gómez, N. Aymerich, C. G. Almudéver,
F. Moll, and A. Rubio, “Systematic and Random Variability Analysis
of Two Different 6T-SRAM Layout Topologies,” Microelectronics
Journal, vol. 44, no. 9, pp. 787–793, 2013.

[4] R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant
Devices,” in International Workshop on Security Protocols. Springer,
1997, pp. 125–136.

[5] ARM Limited, “ARM Cortex-A Series: Programmer’s Guide for
ARMv8-A.”

[6] Arm Limited, “Security in ARMv8-A systems,” 2017, https://develo
per.arm.com/documentation/100935/0100/The-TrustZone-hardware-a
rchitecture-?lang=en.

[7] ARM Limited, “Armv8-M Architecture Reference Manual,” 2020,
https://developer.arm.com/documentation/ddi0553/bn/.

[8] ARM limited, “ARM Cortex-A53 MPCore Processor Technical Ref-
erence Manual,” 2021, https://developer.arm.com/documentation/dd
i0500/j/Introduction/Product-documentation-and-design-flow/Docu
mentation.

[9] ARM Limited, “L220 Cache Controller Technical Reference Manual,”
2021, https://developer.arm.com/documentation/ddi0329/l/functional
-overview/functional-operation/trustzone-support-in-the-cache-cont
roller.

[10] ASU, “Predictive Technology Model (PTM),” 2020, http://ptm.asu.
edu/.

[11] J. Bauer, M. Gruhn, and F. C. Freiling, “Lest We Forget: Cold-boot
Attacks on Scrambled DDR3 Memory,” Digital Investigation, vol. 16,
pp. S65–S74, 2016.

[12] A. Bravaix, C. Guérin, V. Huard, D. Roy, J.-M. Roux, and E. Vin-
cent, “Hot-carrier Acceleration Factors for Low Power Management
in DC-AC Stressed 40nm NMOS Node at High Temperature,” in
International Reliability Physics Symposium. IEEE, 2009, pp. 531–
548.

[13] P. Carru, “Attack TrustZone with Rowhammer,” 2017, https://grehac
k.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhamm
er.pdf.

[14] A. Castiglione, K.-K. R. Choo, M. Nappi, and S. Ricciardi, “Context
Aware Ubiquitous Biometrics in Edge of Military Things,” Cloud
Computing, vol. 4, no. 6, pp. 16–20, 2017.

[15] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the Prevailing Security Vulnerabilities in TrustZone-assisted TEE
Systems,” in Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 1416–1432.

[16] S. Chellappa and L. T. Clark, “SRAM-based Unique Chip Identifier
Techniques,” Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 4, pp. 1213–1222, 2015.

[17] H. Cho, P. Zhang, D. Kim, J. Park, C.-H. Lee, Z. Zhao, A. Doupé,
and G.-J. Ahn, “Prime+ Count: Novel Cross-world Covert Channels
on ARM Trustzone,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 441–452.

[18] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. De Lara, H. Raj, S. Saroiu,
and A. Wolman, “Protecting Data on Smartphones and Tablets from
Memory Attacks,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2015, pp. 177–189.

[19] N. T. Corporation, “NuMicro®Family M2351 Series Datasheet,”
2019, https://www.nuvoton.com/export/resource-files/DS_M2351
_Series_EN_Rev1.01.pdf.

[20] ——, “NuMicro®Family M251/M252 Series Datasheet,” 2020, https:
//www.nuvoton.com/export/resource-files/DS_M251_M252_Series_E
N_Rev1.01.pdf.

[21] ——, “NuMicro®Family M261/M262/M263 Series Datasheet,” 2020,
https://www.nuvoton.com/export/resource-files/DS_M261_M262_M
263_Series_EN_Rev1.02.pdf.

[22] M. Cortez, A. Dargar, S. Hamdioui, and G.-J. Schrijen, “Modeling
SRAM Start-up Behavior for Physical Unclonable Functions,” in 2012
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT). IEEE, 2012, pp. 1–6.

[23] S. M. Datta, V. J. Zimmer, K. V. Vaid, W. A. Stevens, and A. L.
Santoni, “Processor Cache Memory as RAM for Execution of Boot
Code,” Aug. 7 2007, uS Patent 7,254,676.

[24] EET-asia, “STMicroelectronics and NXP launch ARM Cortex-M33
Based Chips in Bid to Secure the IoT,” 2021, https://www.nxp.com.
cn/docs/en/application-note/AN13037.https://www.eetasia.com/1810
1805-mcus-answer-to-iot-security-worries/.

[25] R. Electronics, “Renesas Synergy™ Platform Synergy Microcon-
trollers S1 Series,” 2019, https://www.renesas.com/us/en/docume
nt/man/s1ja-microcontroller-group-users-manual.

[26] R. P. Foundation, “RPi-3B-Reduced,” 2015, https://www.raspberryp
i.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3b_1
p2_reduced.pdf.

[27] A. Garg and T. T. Kim, “Design of SRAM PUF with Improved
Uniformity and Reliability Utilizing Device Aging Effect,” in 2014
IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2014, pp. 1941–1944.

[28] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache Storage
Channels: Alias-driven Attacks and Verified Countermeasures,” in
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 38–55.

[29] U. Guin, W. Wang, C. Harper, and A. D. Singh, “Detecting Recycled
SoCs by Exploiting Aging Induced Biases in Memory Cells,” in 2019
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2019, pp. 72–80.

[30] P. Gutmann, “Data Remanence in Semiconductor Devices,” in
USENIX Security Symposium, 2001, pp. 39–54.

[31] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest We Remember: Cold-boot Attacks on Encryption Keys,” Com-
munications of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[32] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State
as an Identifying Fingerprint and Source of True Random Numbers,”
IEEE Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, Sep.
2009.

[33] M. Hutter and J.-M. Schmidt, “The Temperature Side Channel and
Heating Fault Attacks,” in International Conference on Smart Card
Research and Advanced Applications. Springer, 2013, pp. 219–235.

[34] N. T. Inc., 2021, https://rtfm.newae.com/Targets/CW308%20UFO/.

[35] T. Instruments, “MSP430G2x53 Automotive Mixed-Signal Microcon-
trollers,” 2014, https://www.ti.com/lit/ds/symlink/msp430g2553-q1.p
df?ts=1618423366624&ref_url=https%253A%252F%252Fwww.ti.co
m%252Fproduct%252FMSP430G2553-Q1.

[36] ——, “SimpleLink ultra-low-power 32-bit Arm Cortex-M4F MCU
With Precision ADC, 256KB Flash and 64KB RAM,” 2019, https:
//www.ti.com/document-viewer/MSP432P401R/datasheet/device-ov
erview-slas8261807#SLAS8261807.

https://www.intel.la/content/dam/www/public/us/en/documents/datasheets/pentium-dual-core-desktop-e2000-datasheet.pdf
https://www.intel.la/content/dam/www/public/us/en/documents/datasheets/pentium-dual-core-desktop-e2000-datasheet.pdf
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-?lang=en
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-?lang=en
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-?lang=en
https://developer.arm.com/documentation/ddi0553/bn/
https://developer.arm.com/documentation/ddi0500/j/Introduction/Product-documentation-and-design-flow/Documentation
https://developer.arm.com/documentation/ddi0500/j/Introduction/Product-documentation-and-design-flow/Documentation
https://developer.arm.com/documentation/ddi0500/j/Introduction/Product-documentation-and-design-flow/Documentation
https://developer.arm.com/documentation/ddi0329/l/functional-overview/functional-operation/trustzone-support-in-the-cache-controller
https://developer.arm.com/documentation/ddi0329/l/functional-overview/functional-operation/trustzone-support-in-the-cache-controller
https://developer.arm.com/documentation/ddi0329/l/functional-overview/functional-operation/trustzone-support-in-the-cache-controller
http://ptm.asu.edu/
http://ptm.asu.edu/
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf
https://grehack.fr/data/2017/slides/GreHack17_Attack_TrustZone_with_Rowhammer.pdf
https://www.nuvoton.com/export/resource-files/DS_M2351_Series_EN_Rev1.01.pdf
https://www.nuvoton.com/export/resource-files/DS_M2351_Series_EN_Rev1.01.pdf
https://www.nuvoton.com/export/resource-files/DS_M251_M252_Series_EN_Rev1.01.pdf
https://www.nuvoton.com/export/resource-files/DS_M251_M252_Series_EN_Rev1.01.pdf
https://www.nuvoton.com/export/resource-files/DS_M251_M252_Series_EN_Rev1.01.pdf
https://www.nuvoton.com/export/resource-files/DS_M261_M262_M263_Series_EN_Rev1.02.pdf
https://www.nuvoton.com/export/resource-files/DS_M261_M262_M263_Series_EN_Rev1.02.pdf
https://www.nxp.com.cn/docs/en/application-note/AN13037.https://www.eetasia.com/18101805-mcus-answer-to-iot-security-worries/
https://www.nxp.com.cn/docs/en/application-note/AN13037.https://www.eetasia.com/18101805-mcus-answer-to-iot-security-worries/
https://www.nxp.com.cn/docs/en/application-note/AN13037.https://www.eetasia.com/18101805-mcus-answer-to-iot-security-worries/
https://www.renesas.com/us/en/document/man/s1ja-microcontroller-group-users-manual
https://www.renesas.com/us/en/document/man/s1ja-microcontroller-group-users-manual
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3b_1p2_reduced.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3b_1p2_reduced.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3b_1p2_reduced.pdf
https://rtfm.newae.com/Targets/CW308%20UFO/
https://www.ti.com/lit/ds/symlink/msp430g2553-q1.pdf?ts=1618423366624&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FMSP430G2553-Q1
https://www.ti.com/lit/ds/symlink/msp430g2553-q1.pdf?ts=1618423366624&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FMSP430G2553-Q1
https://www.ti.com/lit/ds/symlink/msp430g2553-q1.pdf?ts=1618423366624&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FMSP430G2553-Q1
https://www.ti.com/document-viewer/MSP432P401R/datasheet/device-overview-slas8261807#SLAS8261807
https://www.ti.com/document-viewer/MSP432P401R/datasheet/device-overview-slas8261807#SLAS8261807
https://www.ti.com/document-viewer/MSP432P401R/datasheet/device-overview-slas8261807#SLAS8261807

[37] Intel, “8𝑡ℎ and 9𝑡ℎ Generation Intel Core Processor Families and Intel
Xeon E Processor Families,” 2021, https://www.intel.com/content/da
m/www/public/us/en/documents/datasheets/8th-gen-core-family-data
sheet-vol-1.pdf#page=118&zoom=100,94,402.

[38] N. Jacob, J. Heyszl, A. Zankl, C. Rolfes, and G. Sigl, “How to
Break Secure Boot on FPGA SoCs Through Malicious Hardware,” in
International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 2017, pp. 425–442.

[39] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu, and R. Karri,
“Magic: Malicious Aging in Circuits/Cores,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 12, no. 1, pp. 1–25,
2015.

[40] N. Karimi, T. Moos, and A. Moradi, “Exploring the Effect of Device
Aging on Static Power Analysis Attacks,” UMBC Faculty Collection,
2019.

[41] S. Keane, “Apple AirTags Apparently Hacked by Security Re-
searcher,” 2019, https://www.cnet.com/tech/mobile/apple-airtags
-apparently-hacked-by-security-researcher/.

[42] S. Khan, N. Z. Haron, S. Hamdioui, and F. Catthoor, “NBTI Monitor-
ing and Design for Reliability in Nanoscale Circuits,” in 2011 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems. IEEE, 2011, pp. 68–76.

[43] T. T. Kim and Z. H. Kong, “Impacts of NBTI/PBTI on SRAM 𝑉𝑚𝑖𝑛

and Design Techniques for SRAM 𝑉𝑚𝑖𝑛 Improvement,” in 2011
International SoC Design Conference. IEEE, 2011, pp. 163–166.

[44] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System Level Anal-
ysis of Fast, Per-core DVFS Using On-chip Switching Regulators,”
in 2008 IEEE 14th International Symposium on High Performance
Computer Architecture. IEEE, 2008, pp. 123–134.

[45] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “Enabling On-
chip Switching Regulators for Multi-core Processors Using Current
Staggering,” Proceedings of the Work. on Architectural Support for
Gigascale Integration, 2007.

[46] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An Analytical Model
for Negative Bias Temperature Instability,” in Proceedings of the
2006 IEEE/ACM international conference on Computer-aided design,
2006, pp. 493–496.

[47] A. Limited, “ARM Cortex-A72 MPCore Processor Technical Refer-
ence Manual,” 2016, https://developer.arm.com/documentation/1000
95/0003/.

[48] A. limited, “Arm Cortex-A78 Core Technical Reference Manual,”
2021, https://developer.arm.com/documentation/102160/latest.

[49] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Armageddon: Cache Attacks on Mobile Devices,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 549–564.

[50] T. Liu, C. C. Chen, J. Wu, and L. Milor, “SRAM Stability Analysis for
Different Cache Configurations due to Bias Temperature Instability
and Hot Carrier Injection,” in Intl. Conference on Computer Design,
ser. ICCD, Oct. 2016, pp. 225–232.

[51] X. Liu, C. Qian, W. G. Hatcher, H. Xu, W. Liao, and W. Yu, “Se-
cure internet of things (iot)-based smart-world critical infrastructures:
Survey, case study and research opportunities,” IEEE Access, vol. 7,
pp. 79 523–79 544, 2019.

[52] R. Maes and V. v. d. Leest, “Countering the effects of silicon aging
on SRAM PUFs,” in Intl. Symposium on Hardware-Oriented Security
and Trust, ser. HOST, May 2014, pp. 148–153.

[53] J. Mahmod and M. Hicks, “Sram has no chill: exploiting power
domain separation to steal on-chip secrets,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 1043–
1055.

[54] A. Maiti, L. McDougall, and P. Schaumont, “The Impact of Aging on
an FPGA-Based Physical Unclonable Function,” in Intl. Conference
on Field Programmable Logic and Applications, ser. FPL, Sep. 2011,
pp. 151–156, star.

[55] A. Maiti, V. Gunreddy, and P. Schaumont, “A Systematic Method
to Evaluate and Compare the Performance of Physical Unclonable
Functions,” in Embedded systems design with FPGAs. Springer,
2013, pp. 245–267.

[56] C. Marchand, A. Aubert, L. Bossuet et al., “On the Security Evalua-
tion of the ARM TrustZone Extension in a Heterogeneous SoC,” in
2017 30th IEEE International System-on-Chip Conference (SOCC).
IEEE, 2017, pp. 108–113.

[57] B. Marr, “Smart Dust is Coming. Are You Ready,” Accessed August
2023, vol. 30, 2018, https://www.forbes.com/sites/bernardmarr/2018/
09/16/smart-dust-is-coming-are-you-ready/?sh=42c415765e41.

[58] J. McMahan, W. Cui, L. Xia, J. Heckey, F. T. Chong, and T. Sher-
wood, “Challenging On-chip SRAM Security with Boot-state Statis-
tics,” in 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2017, pp. 101–105.

[59] Microchip Technology Inc, “SAM L10/L11 Family: Ultra Low-
Power, 32-bit Cortex-M23 MCUs with TrustZone, Crypto, and En-
hanced PTC,” 2020.

[60] Microchip Technology Inc., “World-Class, Award-Winning SAM L10
and SAM L11 Microcontroller Family,” 2021, https://www.microchi
p.com/en-us/products/microcontrollers-and-microprocessors/32-bit
-mcus/sam-32-bit-mcus/sam-l/sam-l10-l11.

[61] NXP Semiconductor, https://www.nxp.com/docs/en/application-note
/AN13037.pdf, accessed: 2023-7-15.

[62] NXP Semiconductors, “UM11126:LPC55S6x/LPC55S2x/LPC552x
User manual,” 2019.

[63] ——, “LPC55S6x: High Efficiency Arm®
Cortex®-M33-Based Microcontroller Family,” 2021,
https://www.nxp.com/products/processors-and-microcontrollers/arm-
microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/high-
efficiency-arm- cortex-m33-based-microcontroller-family:LPC55S6x.

[64] J. Pabel, “FrozenCache Mitigating Cold-boot Attacks for Full-Disk-
Encryption Software,” in 27th Chaos Communication Congress, 2010.

[65] R. Pi, “Raspberry pi 4 model b specifications.” [Online]. Available:
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-reduced-sch
ematics.pdf

[66] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaching Trust-
Zone by Software-Controlled Voltage Manipulation Over Multi-Core
Frequencies,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 195–209.

[67] M. T. Rahman, D. Forte, X. Wang, and M. Tehranipoor, “Enhanc-
ing Noise Sensitivity of Embedded SRAMs for Robust True Ran-
dom Number Generation in SoCs,” in 2016 IEEE Asian Hardware-
Oriented Security and Trust (AsianHOST). IEEE, 2016, pp. 1–6.

[68] Raspberry Pi Foundation, “Boot Sequence,” 2021, https://www.rasp
berrypi.org/documentation/hardware/raspberrypi/bootmodes/bootflo
w.md.

[69] ——, “Raspberry Pi 3 Model B (v1.2),” 2021, https://www.raspberr
ypi.org/products/raspberry-pi-3-model-b/.

[70] Raspberry Pi Ltd, “Raspberry pi 4 model B specifications –,” https:
//www.raspberrypi.com/products/raspberry-pi-4-model-b/specificatio
ns/, accessed: 2023-1-10.

[71] D. Rath, “Open On-Chip Debugger: Free and Open On-Chip Debug-
ging, In-System Programming and Boundary-Scan Testing,” 2021,
http://openocd.org/about/.

[72] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip Feng Shui: Hammering a Needle in the Software Stack,” in 25th
{USENIX} Security Symposium ({USENIX} Security 16), 2016, pp.
1–18.

[73] RICHTEK, “2.7MHz 3A Step-Down Converter with I2C Interface,”
2013, https://www.richtek.com/assets/product_file/RT8088A/DS8088
A-00.pdf.

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf#page=118&zoom=100,94,402
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf#page=118&zoom=100,94,402
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf#page=118&zoom=100,94,402
https://www.cnet.com/tech/mobile/apple-airtags-apparently-hacked-by-security-researcher/
https://www.cnet.com/tech/mobile/apple-airtags-apparently-hacked-by-security-researcher/
https://developer.arm.com/documentation/100095/0003/
https://developer.arm.com/documentation/100095/0003/
https://developer.arm.com/documentation/102160/latest
https://www.forbes.com/sites/bernardmarr/2018/09/16/smart-dust-is-coming-are-you-ready/?sh=42c415765e41
https://www.forbes.com/sites/bernardmarr/2018/09/16/smart-dust-is-coming-are-you-ready/?sh=42c415765e41
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-l/sam-l10-l11
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-l/sam-l10-l11
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/sam-32-bit-mcus/sam-l/sam-l10-l11
https://www.nxp.com/docs/en/application-note/AN13037.pdf
https://www.nxp.com/docs/en/application-note/AN13037.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-reduced-schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/bootflow.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/bootflow.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/bootflow.md
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
http://openocd.org/about/
https://www.richtek.com/assets/product_file/RT8088A/DS8088A-00.pdf
https://www.richtek.com/assets/product_file/RT8088A/DS8088A-00.pdf

[74] A. Roelke and M. R. Stan, “Attacking an SRAM-Based PUF through
Wearout,” in IEEE Computer Society Annual Symposium on VLSI,
ser. ISVLSI, Jul. 2016, pp. 206–211.

[75] ——, “Attacking an SRAM-based PUF Through Wearout,” in 2016
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
2016, pp. 206–211.

[76] K. Ryan, “Hardware-backed heist: extracting ecdsa keys from qual-
comm’s trustzone,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 181–194.

[77] A. S. Sedra, D. E. A. S. Sedra, K. C. Smith, and K. C. Smith,
Microelectronic circuits. New York: Oxford University Press, 1998.

[78] N. Sehatbakhsh, H. Hong, B. Lazar, B. Johnson-Smith, O. Yilmaz,
M. Alam, A. Nazari, A. Zajic, and M. Prvulovic, “Syndrome: Spec-
tral analysis for anomaly detection on medical iot and embedded
devicesexperimental demonstration,” in Hardware Demo at IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST, 2017.

[79] N. Semiconductors, “LPC55Sxx debug authentication,” 2021, https:
//www.nxp.com.cn/docs/en/application-note/AN13037.pdf.

[80] D. Sengupta and S. S. Sapatnekar, “Estimating circuit aging due to
bti and hci using ring-oscillator-based sensors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 10, pp. 1688–1701, 2017.

[81] SiFive, Inc., “SiFive U54-MC manual,” https://simfive.cdn.prismic.
io/sifive%2Fdc4980ff-17db-448b-b521-4c7ab26b7488_sifive+u54-
mc+manual+v19.08.pdf.

[82] Silicon Labs, “EFM32 Wonder Gecko Family EFM32WG Data
Sheet,” 2012, https://www.silabs.com/documents/public/data-she
ets/efm32wg-datasheet.pdf.

[83] S. Skorobogatov, “Low Temperature Data Remanence in Static
RAM,” University of Cambridge, Computer Laboratory, Tech. Rep.,
2002.

[84] S. P. Skorobogatov, “Semi-invasive Attacks: a New Approach to
Hardware Security Analysis,” 2005.

[85] STMicroelectronics, “Ultra-low-power Arm® Cortex-M33 32-bit
MCU+TrustZone®+FPU, 165DMIPS, up to 512KB Flash, 256KB
SRAM, SMPS, AES+PKA,” 2020, https://www.st.com/resource/en/d
atasheet/stm32l562ce.pdf.

[86] A. Tang, S. Sethumadhavan, and S. Stolfo, “{CLKSCREW}: Expos-
ing the Perils of Security-oblivious Energy Management,” in 26th
{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.
1057–1074.

[87] TestEquity, “Model 123H Temperature/Humidity Chamber,” 2020, ht
tps://www.testequity.com/category/Environmental-Chambers-Ovens
/Temperature-Humidity-Chambers/TestEquity-123H-\Temperature-
Humidity-Chamber-North-America-Version-17267-1.

[88] M. Tilo, S. Michael, and F. C. Freiling, “Frost: Forensic Recovery
of Scrambled Telephones,” in International Conference on Applied
Cryptography and Network Security, 2014.

[89] T. Tuan, T. Strader, and S. Trimberger, “Analysis of Data Remanence
in a 90nm FPGA,” in 2007 IEEE Custom Integrated Circuits Confer-
ence. IEEE, 2007, pp. 93–96.

[90] E. I. Vatajelu, G. Di Natale, and P. Prinetto, “Towards a Highly
Reliable SRAM-based PUFs,” in 2016 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2016, pp. 273–
276.

[91] M. Weiser, R. Gold, and J. S. Brown, “The Origins of Ubiquitous
Computing Research at PARC in the Late 1980s,” IBM systems
journal, vol. 38, no. 4, pp. 693–696, 1999.

[92] H. Williams, A. Lind, K. Parikh, and M. Hicks, “Silicon Dating,”
arXiv preprint arXiv:2009.04002, 2020.

[93] G. I. Wirth, R. da Silva, and B. Kaczer, “Statistical Model for
MOSFET Bias Temperature Instability Component Due to Charge
Trapping,” IEEE Transactions on Electron Devices, vol. 58, no. 8,
pp. 2743–2751, 2011.

[94] I. Xilinx, “Zynq-7000 SoC and 7 Series Devices Memory Interface
Solutions,” 2018, https://www.xilinx.com/support/documentation/i
p_documentation/mig_7series/v4_2/ds176_7Series_MIS.pdf.

[95] S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A.-R. Sadeghi,
“Remanence Decay Side-channel: The PUF Case,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 6, pp. 1106–1116,
2015.

[96] F. Zhang, S. Yang, J. Plusquellic, and S. Bhunia, “Current Based
PUF Exploiting Random Variations in SRAM Cells,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2016, pp. 277–280.

[97] N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “Case: Cache-assisted
Secure Execution on ARM Processors,” in 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 2016, pp. 72–90.

[98] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “TruSpy: Cache
Side-Channel Information Leakage from the Secure World on ARM
Devices,” IACR Cryptol. ePrint Arch., vol. 2016, p. 980, 2016.

https://www.nxp.com.cn/docs/en/application-note/AN13037.pdf
https://www.nxp.com.cn/docs/en/application-note/AN13037.pdf
https://simfive.cdn.prismic.io/sifive%2Fdc4980ff-17db-448b-b521-4c7ab26b7488_sifive+u54-mc+manual+v19.08.pdf
https://simfive.cdn.prismic.io/sifive%2Fdc4980ff-17db-448b-b521-4c7ab26b7488_sifive+u54-mc+manual+v19.08.pdf
https://simfive.cdn.prismic.io/sifive%2Fdc4980ff-17db-448b-b521-4c7ab26b7488_sifive+u54-mc+manual+v19.08.pdf
https://www.silabs.com/documents/public/data-sheets/efm32wg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32wg-datasheet.pdf
https://www.st.com/resource/en/datasheet/stm32l562ce.pdf
https://www.st.com/resource/en/datasheet/stm32l562ce.pdf
https://www.testequity.com/category/Environmental-Chambers-Ovens/Temperature-Humidity-Chambers/TestEquity-123H-\ Temperature-Humidity-Chamber-North-America-Version-17267-1
https://www.testequity.com/category/Environmental-Chambers-Ovens/Temperature-Humidity-Chambers/TestEquity-123H-\ Temperature-Humidity-Chamber-North-America-Version-17267-1
https://www.testequity.com/category/Environmental-Chambers-Ovens/Temperature-Humidity-Chambers/TestEquity-123H-\ Temperature-Humidity-Chamber-North-America-Version-17267-1
https://www.testequity.com/category/Environmental-Chambers-Ovens/Temperature-Humidity-Chambers/TestEquity-123H-\ Temperature-Humidity-Chamber-North-America-Version-17267-1
https://www.xilinx.com/support/documentation/ip_documentation/mig_7series/v4_2/ds176_7Series_MIS.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mig_7series/v4_2/ds176_7Series_MIS.pdf

Appendix A.
Meta-Review

A.1. Summary
The paper shows how externally-induced accelerated

aging of several SoCs allows secrets in TrustZone to be
leaked when an attacker has physical access to the chip.

The authors observe that SRAM cells are subject to
burn-in through the aging process, and that with artificially
accelerated aging, they can effectively burn-in on-chip se-
crets into the SRAM cells on-demand, and subsequently
exfiltrate them to steal the secrets.

The authors introduce three exfiltration attacks to
demonstrate feasibility: extracting an AES key from Trust-
Zone, extracting proprietary firmware from TrustZone, and
extracting other secrets from processor caches.

A.2. Scientific Contributions
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction

A.3. Reasons for Acceptance
1) Identifies an impactful vulnerability: The authors show

a new method for leaking secrets out of TrustZone
enclaves.

2) The paper provides a valuable step forward in an
established field: Malicious/directed SRAM aging was
previously used only for attacks on availability and
integrity; this work shows how these attacks can target
confidentiality as well.

3) The paper establishes a new research direction, by cre-
ating a discussion on defenses against secret exfiltration
by SRAM aging.

	Introduction
	Background
	ARM TrustZone
	SRAM Power-on State
	Analog-domain Changes and Power-on State

	Attack Overview
	Identifying Attack Enablers
	Attack Evaluation
	Setup and Target Devices
	Tuning Stress Conditions to Enhance Accuracy

	Attack #1: Exfiltrate an AES key from TrustZone
	Attack #2: Exfiltrate Proprietary Firmware from TrustZone
	Attack #3: Exfiltrate Secrets from Cache
	Accessing Cache's Power-on State
	Attacking ARM Core's L1 Cache

	Unifying the Attack Scenarios
	Countermeasures
	Software Defenses
	Initializing the SRAM at startup
	Scrambling the SRAM data at run-time

	Hardware Defenses
	Preventing aging acceleration
	Restricting debug access

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

